S100B is increased in Parkinson’s disease and ablation protects against MPTP-induced toxicity through the RAGE and TNF-α pathway
نویسندگان
چکیده
Parkinson's disease is a neurodegenerative disorder that can, at least partly, be mimicked by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. S100B is a calcium-binding protein expressed in, and secreted by, astrocytes. There is increasing evidence that S100B acts as a cytokine or damage-associated molecular pattern protein not only in inflammatory but also in neurodegenerative diseases. In this study, we show that S100B protein levels were higher in post-mortem substantia nigra of patients with Parkinson's disease compared with control tissue, and cerebrospinal fluid S100B levels were higher in a large cohort of patients with Parkinson's disease compared with controls. Correspondingly, mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine showed upregulated S100B messenger RNA and protein levels. In turn, ablation of S100B resulted in neuroprotection, reduced microgliosis and reduced expression of both the receptor for advanced glycation endproducts and tumour necrosis factor-α. Our results demonstrate a role of S100B in the pathophysiology of Parkinson's disease. Targeting S100B may emerge as a potential treatment strategy in this disorder.
منابع مشابه
Ellagic Acid Protects the Brain Against 6-Hydroxydopamine Induced Neuroinflammation in a Rat Model of Parkinson’s Disease
Introduction: Neuroinflammation may play as an important risk factor in progressive degeneration of dopaminergic cells. Antioxidants have protective effects against free radicalsinduced neural damage in Parkinson’s disease (PD). In the present study, we examined the effects of ellagic acid (EA) on locomotion and neuroinflammatory biomarkers in a rat model of PD induced by 6-hydroxidopamin...
متن کاملReceptor for advanced glycation endproducts (RAGE) deficiency protects against MPTP toxicity
Parkinson's disease (PD) is a common neurodegenerative disorder of unknown pathogenesis characterized by the loss of nigrostriatal dopaminergic neurons. Oxidative stress, microglial activation and inflammatory responses seem to contribute to the pathogenesis. The receptor for advanced glycation endproducts (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecu...
متن کاملThe effect of low dose amphetamine in rotenone-induced toxicity in a mice model of Parkinson’s disease
Objective(s): The effects of low dose amphetamine on oxidative stress and rotenone-induced neurotoxicity and liver injury were examined in vivo in a mice model of Parkinson’s disease. Materials and Methods: Male mice were treated with rotenone (1.5 mg/kg, every other day for two weeks, subcutaneously). Mice received either the vehicle or...
متن کاملWIN55,212-2, a Cannabinoid Receptor Agonist, Protects Against Nigrostriatal Cell Loss in the MPTP Mouse Model of Parkinson’s Disease
Parkinson’s disease (PD) is characterized by the progressive loss of nigrostriatal dopamine (DA) neurons leading to motor disturbances and cognitive impairment. Current pharmacotherapies relieve PD symptoms temporarily but fail to prevent or slow down the disease progression. In this study, we investigated the molecular mechanisms by which the non-selective cannabinoid receptor agonist WIN55,21...
متن کاملAdrenomedullin protects rat dorsal root ganglion neurons against doxorubicin-induced toxicity by ameliorating oxidative stress
Objective(s): Despite effective anticancer effects, the use of doxorubicin (DOX) is hindered due to its cardio and neurotoxicity. The neuroprotective effect of adrenomedullin (AM) was shown in several studies. The present study aimed to evaluate the possible protective effects of AM against DOX-induced toxicity in dorsal root ganglia (DRGs) neurons. M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 135 شماره
صفحات -
تاریخ انتشار 2012